返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。
7 N. w, w; V, N5 L. i
5 f4 C. _4 [8 Jos.tvboxnow.com  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况: os.tvboxnow.com5 x+ y8 L' a9 N6 L9 V+ I
公仔箱論壇" Q/ f; `$ W3 r" t3 k: `
  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。
1 j; G) H, h( I6 f  e0 Yos.tvboxnow.com8 x3 G) r. X$ N" |* L4 o2 }* g
  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况: $ Q4 e9 \2 B5 q
os.tvboxnow.com1 e; n/ C" x9 c/ J- B
  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。
: d# |+ F. o/ u' h( L% l4 X公仔箱論壇2 o& q: g8 a( {1 }. M9 s( O: S
  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。
% [& \9 e& y- b5 r8 yos.tvboxnow.comTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。& `  E( ^9 ?( b
  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。tvb now,tvbnow,bttvb4 d2 n6 a* g/ q+ \8 `* R0 Z) U! h
公仔箱論壇. z" S: r& K6 O1 R5 e, M
  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。 os.tvboxnow.com; K+ A+ m0 o2 |3 n
- H; m1 @) ^8 D/ E  R4 }* _& {$ S: M& C
  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。 ( l, g; @5 l4 V! O* M3 {. [

1 n. Y" e- Y0 m! BTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。' i! f# i1 ]5 I. y: m

) \9 {% m1 n' S5 oTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  这时,可以称第二次了。这次称后可能出现的是三种情况: 4 m# q5 J, Z8 b0 R1 q" S
os.tvboxnow.com1 T: j1 ^( n0 z" f. w
  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。 % L& k$ ]7 x. Z: Q- a# i0 q) l
公仔箱論壇* H! k0 X; l- N0 Z( }2 S
  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。 0 g% J8 n1 l2 }6 S, v/ n

1 Y- K$ K4 \0 \# D2 Mtvb now,tvbnow,bttvb  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。
% S( l6 V: f  f- i( @7 ztvb now,tvbnow,bttvbtvb now,tvbnow,bttvb' s3 Y2 v, F/ H1 j2 S: K: f6 x* ]
  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。
) ?" q9 V" _5 u+ V$ ios.tvboxnow.comTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。/ o2 Y1 f( t( C, P- S7 j
  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。 公仔箱論壇1 o; Q% L+ p( ^% G' M1 C) I4 @

3 K$ m( y) `2 j% i5 @! G  r% c  K公仔箱論壇  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。
& A& f$ v% x) _- bos.tvboxnow.comtvb now,tvbnow,bttvb4 J+ o7 \4 {+ c2 i. G+ e
  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。' `4 ^! D: m7 K* L2 M! }$ p+ V2 m
os.tvboxnow.com6 C" c7 e& N2 M
[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表