返回列表 回復 發帖
noe laaaaaaaa
Let see...Thanks...
好難.....
很麻烦,不过有解
把这三组乒乓球分别编号为 A组、B组、C组。
7 y$ b; S, S2 S" R: u) s* A
( j, x3 Y4 Q+ c. d! D$ K; M( x4 P$ K& F% Los.tvboxnow.com  首先,选任意的两组球放在天平上称。例如,我们把A、B两组放在天平上称。这就会出现两种情况: 公仔箱論壇& W0 D- w9 R8 V' B$ L& @  b1 z1 p, v
* B  c' |, {7 W. f* t5 c7 N1 Y
  第一种情况,天平两边平衡。那么,不合格的坏球必在c组之中。
; u  p( A1 w' j8 o* |tvb now,tvbnow,bttvb
  ~) c! b& z8 u1 d# m  其次,从c组中任意取出两个球 (例如C1、C2)来,分别放在左右两个盘上,称第二次。这时,又可能出现两种情况:
2 Q* b  Y7 P( g+ Y/ O
7 U2 I4 g/ h% w+ t/ S公仔箱論壇  1·天平两边平衡。这样,坏球必在C3、C4中。这是因为,在12个乒乓球中,只有一个是不合格的坏球。只有C1、C2中有一个是坏球时,天平两边才不平衡。既然天平两边平衡了,可见,C1、C2都是合格的好球。
' C. A! v! m% d) u% ~& N' }: V3 tTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。tvb now,tvbnow,bttvb$ B5 u; @. t4 K; I! w0 [1 x' D1 p
  称第三次的时候,可以从C3、C4中任意取出一个球(例如C3), 同另一个合格的好球(例如C1)分别放在天平的两边,就可以推出结果。这时候可能有两种结果:如果天平两边平衡,那么,坏球必是C4;如果天平两边不平衡,那么,坏球必是C3。
) v/ @% s8 K6 O: }" k9 X: H1 l/ w
) V  G# Z1 U3 j+ R6 N, l% U  2·天平两边不平衡。这样,坏球必在C1、C2中。这是因为,只有C1、C2中有一个是坏球时,天平两边才不能平衡。这是称第二次。
) r8 K% n% y( W1 Z& E公仔箱論壇os.tvboxnow.com7 @+ m% x7 Z$ m) R0 D" D
  称第三次的时候,可以从C1、C2中任意取出一个球(例如C1), 同另外一个合格的好球(例如C3),分别放在天平的两边,就可以推出结果。道理同上。 公仔箱論壇4 u; [) v  k# z5 X5 |5 X5 _

+ O9 |# s  W3 m公仔箱論壇  以上是第一次称之后出现第一种情况的分析。
第二种情况,第一次称过后天平两边不平衡。这说明,c组肯定都是合格的好球,而不合格的坏球必在A组或B组之中。
5 D' H# r& H4 C/ l  i# X$ c
+ J8 a- C- _+ M3 ^. t" _os.tvboxnow.com  我们假设:A组 (有A1、A2、A3、A4四球)重,B组(有B1、B2、B3、B4四球)轻。这时候,需要将重盘中的A1取出放在一旁,将A2、A3取出放在轻盘中,A4仍留在重盘中。同时,再将轻盘中的B1、 B4取出放在一旁,将B2取出放在重盘中,B3仍留在轻盘中,另取一个标准球C1也放在重盘中。经过这样的交换之后,每盘中各有三个球: 原来的重盘中,现在放的是A4、B2、C1,原来的轻盘中,现在放的是A2、A3、B3。9 U$ {, Z7 {2 }, ?4 i

" k9 ~" v4 r6 a& e4 |tvb now,tvbnow,bttvb  这时,可以称第二次了。这次称后可能出现的是三种情况: ) t+ C  w: L' F! |
os.tvboxnow.com6 j. E* X" r1 I6 }6 J: p
  1·天平两边平衡。这说明A4B2C1=A2A3B3,亦即说明,这六只是好球,这样,坏球必在盘外的A1或B1或B4之中。已知A盘重于B盘。所以,A1或是好球,或是重于好球;而B1、B4或是好球,或是轻于好球。
; ]- u8 S( J( E! l4 G公仔箱論壇" D. x5 X6 Z' j9 `
  这时候,可以把B1、B4各放在天平的一端,称第三次。这时也可能出现三种情况:(一)如果天平两边平衡,可推知A1是不合格的坏球,这是因为12只球只有一只坏球,既然B1和B4重量相同,可见这两只球是好球,而A1为坏球;(二)B1比B4轻,则B1是坏球;(三) B4比B1轻,则B4是坏球,这是因为B1和B4或是好球,或是轻于好球,所以第三次称实则是在两个轻球中比一比哪一个更轻,更轻的必是坏 球。 TVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。/ N, I( A" Z5 a4 W! A- k
- O- N  w5 w5 b6 F3 C
  2·放着A4、B2、C1的盘子(原来放A组)比放A2、A3、B3的盘子(原来放B组)重。在这种情况下,则坏球必在未经交换的A4或B3小U馐且蛭呀换坏腂2、A2、A3个球并未影响轻重,可见这三只球都是好球。
, y& V# a& d% L, R2 I5 q
8 S8 [+ Y  L" G2 i' otvb now,tvbnow,bttvb  以上说明A4或B3这其中有一个是坏球。这时候,只需要取A4或B3同标准球C1比较就行了。例如,取A4放在天平的一端,取C1放在天平的另一端。这时称第三次。如果天平两边平衡,那么B3是坏球; 如果天平不平,那么A4就是坏球 (这时A4重于C1)。tvb now,tvbnow,bttvb7 F! r( P, T$ o# I- z/ r$ i

$ V! n( X4 H- e- Q公仔箱論壇  3.放A4、B2、C1的盘子(原来放A组)比放在A2、A3、B3的盘 子(原来放B组)轻。在这种情况下,坏球必在刚才交换过的A2、A3、B23球之中。这是因为,如果A2、A3、B2都是好球,那么坏球必在A4或B3之中,如果A4或B3是坏球,那么放A4、B2、C1的盘子一定 重于放A2、A3、B3的盘子,现在的情况恰好相反,所以,并不是A2、A3、B2都是好球。 os.tvboxnow.com+ _0 }- d( i: R3 i. n/ y
tvb now,tvbnow,bttvb# p. {  V. c; n2 T- y6 w
  以上说明A2、A3、B2中有一个是坏球。这时候,只需将A2同A3相比,称第三次,即推出哪一个是坏球。把A2和A3各放在天平的一端 称第三次,可能出现三种情况:(一)天平两边乎衡,这可推知B2是坏球;(二)A2重于A3,可推知A2是坏球;(三)A3重于A2,可推知A3是坏球。
$ U: }8 p- w5 d& e6 `2 CTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。
) B3 f9 q9 l* A; u) \8 x" DTVBNOW 含有熱門話題,最新最快電視,軟體,遊戲,電影,動漫及日常生活及興趣交流等資訊。  根据称第一次之后,出现的A组与B组轻重不同的情况,我们刚才假设A组重于B组,并作了以上的分析,说明在这种情况下如何推论哪一个球是坏球。如果我们现在假定出现的情况是A组轻于B组,推论与什么类似,这里就略了
hm...thats too easy man, 20seconds can solve the answer...:onion05:
太简单了吧
good
thanks alot
let see
厉害公仔箱論壇+ r& x& ~$ m: ]

$ U2 {+ n/ m" ]+ P6 s[ 本帖最後由 wlg12003 於 2007-11-14 01:14 PM 編輯 ]
我的答案与三楼一样,但是仔细想想好像不对啊
做不出来
好難呀....
返回列表